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ABSTRACT

The equations of motion of a beam with the lateral

surface thermally insulated are derived, including

the effects of shear deformation and rotatory iner-

tia. Thermoelastic coupling in the heat conduction

equation and in the elastic constitutive relations is

also included. Axial deformations of the beam are

taken Into account. Two examples are presented
and discussed.
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SYMBOLS

A cross-sectional area

C boundary of cross section of a beam

c specific heat at constant volume

c 2 E/p
I~

E modulus of elasticity

xx ,yy z

F(t), G(t) see pages 18 and 20

PI( y ) imaginary part of ee

Ixx moments of inertia
x Iyy, xy

Kx K y, K Timoshenko shear constantsx y
S C k the rmal c onduc tivity

Mx, M y bending moments (see page 5)

N axial force (see page 5)

n mode numbe r

Px0 Py'F Pz applied forces per unit length (see page 5)

Qx, Q y shear resultants (see page 5)

Rx, Ry applied moments per unit length (see page 5)

T fA TdA

T temperature measured from ambient

T 0 ambient temperature (absolute)

Tx, Ty fA y, x'dA

U, V, W, Wx, y displacement resultants (see page 5)

u, v, w I/AfA 15,,; dA

Ua, V, W displacements

iv



x, y, z rectangular Cartesian coordinates

CL coefficient of thermal expansion

S1cl/(icnw) (see page 19),

In 2 w2 /(, 2 ) [EIyy /(pA)]l 1 /2 I/(A/I yy + n2 w2 /1 2 )(see page 22)

j(3k + ZýL)a 2TOI/[(( + R)PC]

w •/(nwc 1 ) (see page 19),

2/(n22r2 )[pA/(El yy)]1/2 (see page 22)

tI' 42' t3 roots of the frequency equations, Eqs. (39) and (49)

v Poisson's ratio

(l- )1/2

K k/pc thermal diffusivity

X, R Lame elastic constants

P density

0 xx' Tyy' etc. stress components

cross-sectional rotations (see page 13)

w frequency

V



SECTION I

INTRODUCTION

In treating the problem of calculating stresses and deflections of a

complicated structure, the common practice is to consider the structure as

being made of a number of simpler structural elements whenever possible

and to treat these elements separately. Of all of the simple structural ele-

ments, the beam is perhaps the most common and at the same time the most

useful element. In many applications, the beam can be thought of as having
dynamic tractions and temperature gradients applied to its bounding surfaces.
This report treats the problem of the dynamic response of a beam to dynamic

loads and to thermal gradients applied to the ends of the beam under the con-

dition that the lateral surface of the beam is insulated. This latter condition

could be fulfilled approximately if the beam were in the hard vacuum of a

space environment and if the thermal radiation from its lateral surfaces could

S ( be neglected.

It is well known 1 ' 2 that the temperature couples with the elastic prob-

lem in two ways: the coupling in the constitutive relations described by

Neumann 3 and the coupling in the heat conduction equation described by Biot. 1

This latter coupling can be neglected for a wide class of problems, and
4-6

several articles have treated the problems associated with this assumption.
7

Ignaczak and Nowacki have presented a similar analysis; however, because

the reference was not available to the author, no appraisal of it relative to

the present work could be made. The Biot coupling is included in this report

in a general theory which also includes rotatory inertia and shear deformation.



SECTION U

ANALYSIS OF RAYLEIGH BEAM

The coupled thermoelastic equations of motion in a rectangular Cartesian

coordinate system are1 ' 2

Cr + a. + --xx, x xy, y xz, z P: ptt

(rxy, x + a- yI + yz, z+= p, tt (1)

XZx 'yz, y O'ZZ, z= pW tt

kV : pc "T + (3X + Z)a Toet ()

t 0 , t 2

IF . ke + 2ýLV y(3 X + 2~41LTr (3)

I zz :e %+ZILWIz (3X+2 )C7 IT

x ,(u,y + V,x

Wxz: 14, z + --, x) (4)

ryz: A(V, z + W, y)

where wxx, c-yy, etc., are the usual components of the stress tensor; X and V
are the Lami constants; U, V, W are the displacement components; k is the

0



0
thermal conductivity; p is the density; T is the temperature; c is the specific

heat of constant volume; e is the dilatation and is given by ? + V +y
,x *Y *

A comma followed by a subscript denotes differentiation.

The terms (3A + 2L)a T occurring in Eq. (3) are the usual Neumann

coupling terms. 3,8 The term (3A + 2.L)a TO e tin Eq. (3) is the coupling

described by Biot. The method of procedure is to integrate Eqs. (1) through
(4) across the thickness of the beam. The centroid of the cross section of the

beam lies along the z axis, as shown in Fig. 1. Green's lemma is used in

the form

A(Px+Qy)dA -Qdx+Pdy

where A denotes the cross-sectional area of the beam and C the boundary of

the cross section. The equations will be derived first neglecting the shear

deformation of the beam which will be put in later.

X

Fig. 1. Beam geometry.

4



Define:

0 x = f a- dA Qy fadA

A A~d c~d

AA

(5)

Ufid V Vf VdA W wf ;WdA

A A A

W~fx ~ W y, W~ydA

Rp j ~dx -r ady)

py( dx a- rdy

f C)x
5



The physical meaning of these quantities is clear: x and y are the shear

forces and N is the tensile force in the beam; M x and My are the usual bending

moments; U, V, W, Wx, Wy are the displacement resultants and moments

and will be discussed later; Px, Py Pz' are the applied pressures, taken

positive when acting in the direction opposite to the respective coordinate

areas; R and R are the applied bending moments, taken positive in thex y
aforementioned sense.

Equations (1) are now integrated over the cross section of the beam.

The last of Eqs. (1) is multiplied by x and y respectively and integrated. The

results are:

Qx, z " Px = PU, tt

y, z " Py = PV tt

N, z Pz = pW' tt (7) )

My, z Qx " Ry = PWy, tt

M•,z Q " R = pWX, tt

The same procedure is now applied to the heat conduction equation,

Eq. (2). Integrating Eq. (2) across the thickness, one has

kA +,yy)dA +kjFTzdA -pcTtdA

(3k + 2)L)a To f e, tdA (8)

6



0
If Green's lemma is used and if it is assumed that differentiations with respect

to z and t can be interchanged with the integration, one has

k T - pc Tt +kf (- cdx +'•Fdy)-

(3k + Z4• To .t f e dA (9)

where

T T dA (10)
A

If the lateral surface of the beam is assumed to be insulated, then the integral

k - T ydx + T xdy) vanishes since the integrand is proportional to S'T/8n.

Then (9) becomes

k T, -pc T,t= (3k + 2)a T 0  e dA ()

Multiplying Eq. (2) by x and y respectively and integrating yields

k T - pc T - k fT'xdA= (3X+z la.To • Afxe dA
yTA .f- t TA d - A

kT - pc Tt - kf YdA =(3k + ZL)a To yt f ye dA (2

7



whe re

T~ fyTdA Ty f x'dA (13)

This is as far as one can go without assuming some sort of deformation

and temperature variation across the thickness of the beam. For the defor-

mations, it is not unreasonable to expect a linear variation; this will be taken

to be

u u(z, t) Vv(z, t) 1
(14)

W =w(z,t)-XU z yv

This assumption corresponds to Bernoulli-Euler bending theory. To include

the effects of shear deformation, this assumption must be modified slightly;

this point will be taken up in detail later. Since the outer surface of the beam

is insulated, it would not be unreasonable to assume a linear variation in

temperature as well. For other boundary conditions, such as a given tempera-

ture on the surface, this assumption would not necessarily be warranted.

With the assumption of linear temperature gradients, and using the

definitions (10) and (13), one can express the temperature as

S) + x xx Ty(zt) - IxTx(z,t)

A I I - I
xxIyy xy

I T (z, t) - I T (z, t)
+ y xy (15)

xx yy xy

8



This assumption gives rise to a fundamental inconsistency. The boundary

condition for an insulated surface states that the normal derivative of the

temperature vanishes on the lateral surface of the beam. Equation (15) will

not, in general, satisfy this condition. It is felt, however, that this incon-

sistency is an approximation of accuracy comparable to the usual approxima-

tions of beam theory, and should yield a good degree of quantitative accuracy.
A similar assumption was made by Biot in a similar problem which was

solved by a variational procedure.

The assumptions (14) imply that

0xx 0 yy

•xy =yz XZ = 0

(16)

T E(w - xu - yv - ET

e 2-( v) (wz -xU, z"yvz + (A• + Z•)•

These implications are inconsistent with the assumptions used in deriving

Eqs. (7). These inconsistencies are inherent in beam theory, and the justi-

fication of the deformations as given by Eqs. (14) has been established by

centuries of use.

The stress resultants become

N = EAw - EaT

M = -E(I u + v EaT (17)

y yy, zz Ixyzz y (17)

M x = - E(I xy u zz+ xvz)-Ex

9



From the third equation of (16), it is easily shown that

Nzz I • Ix My " Mx IyyMx M I xyM
N ix +Y Y1Y

Iz I I 1I
xx yy xy xx yy xy

IT-T IyT-I

Eax xx y xyT- Eay xy T EaT (18)
x i J2  I - A

yy xy xx yy xy

Using the last of Eqs. (16) plus Eq. (15) to calculate OT/By and 8T/Mx, one
obtains

k -PC (3 + ZR) 2 2T 01T

k ,zz (k + Opc I T t

(3k + 2i)a T 0 (I - 2v)Aw zt )

kT(3k~ + Zk2ýa2T 0 T xxTyIXTk~ TFPC
! y, zz (k + L)pc I I -Y t

xx yy xy (19)

-(3k + 2L)a T0(I - 2v)(I U t + IV
0 yy zzt xy , zzt

r (3k+ 21) 2 2aT01 I T -I T
k Tx, z-z pcI- ( 0" +1)PC Ty't" k A YY x xy Y

IxxIyy xy

-(3k + 4)a T0 (I - 2v)(IyU uzt +Ix, zvt)

10



It now remains only to apply assumptions (14) to the equations of

motion, Eqs. (7). The result is

x,z Px = pAutt

y, z " Py = pAv, tt

N z - Pz z pAw, tt (20)

M Q-R -p(I u +I vy, z x y yyU, ztt + , ztt

Mx, z Q y R x =P(IxyU, ztt + Ixxv, ztt

The terms on the right-hand side of the last two equations of (20) are the

rotatory inertia terms. Since the beam theory assumptions imply that the

shear resultants Qx and Qy are zero, the usual procedure is to eliminate

them from the first two of (20) by the last two equations. The result is

My, zz Ry, z "Px pAu tt P(IyyU, zztt + IxyV, zzt)

Mx, zz Rx, z py pAv, tt P(IxyU, zztt + Iv ztt) (z1)

N "pz paw
z Z ,tt

As a final exercise, the moment and axial force resultants are eliminated

from Eqs. (21) by means of Eqs. (17), with the result

Ea T + E(I u +1 'v )+pAuy, zz yy zzzz xyV, zzzz ,tt

-P(I u +1 v P(2yy zztt xy , zztt = "x (22)

0
11



0
Ea T +E(I u, ss +I v )+pAv

XI ( MS +1 v8MS X OSS I
"P(I yu sstt + I v sst) = -py ; (23)

"Eo T, + EAw, zz -pAw, tt = Pz (24)

The basic equations to be solved are, then, Eqs. (19), (22), (23), and

(24). These constitute six equations in the six unknowns T, Tx# T y u, v, w.

Note that only the first of Eqs. (19) and Eq. (Z4) contain w and T; thus, these

two equations uncouple from the rest. When Ix = 0, the other equations
Ky

uncouple similarly into pairs.

12



SECTION III

ANALYSIS OF TIMOSHENKO BEAM

In the previous section, the effects of rotatory inertia were included

(hence the name "Rayleigh beam"'' 10). In this section, the effects of shear

deformation will be included. The method of analysis will be quite analogous

to that of the previous section.

The basic equations (1) through (4) obviously will be unchanged. The

stress resultant, moment-resultant equations of motion, Eqs. (6), (7), and

(8), will also be unchanged. The heat conduction equations (12) and (13) will

be unchanged except in the term involving e.

To put in the shear deformation, one must change Eqs. (14). One

assumes that

U = u(z, t) , vv(z, t)

W = w(z, t) - X x(z, t) - yy(Z, t)

Here OXand 0 represent the total rotation of the elements (25)dngthHeeC n y rersn h oa oaino h lmnsincluding the

rotation due to bending and the rotation due to shear. The assumptions (25)

imply that

=0" =0
Txx yy

T = E(w, " x, z - yo, z Ec T (26)

e = (1 - Zv)(wzxxz-yo +(3k+

13



0

If, as before, one sets

TfTdA , y dA , Ty fxTdA ,(27)
AAA

then the assumption of a linear temperature profile implies that

"T - + xIxx~yy " Ixyx

I T - I T

+ y yy x v xy y(l
I I - I2

xx yy xy

Using (1 5) and (26) in the heat conduction equations yields

k T - - (3X +L)ca ToI t ( 3k + ZL)a T0(I - 2v)AW, zt

(3 X+ jL)lz a z TO -k 1 yxx y -Ixy Tx

k T z Pi T I T kkT, zz + pc - (k+)pc Y,t I I 1 I2

xx yy xy (28)

-(3k + Z~L)a T0 (l - Zv)(I yy Ox,t + Ixy~y't)

(A (3+ 2ýt)o 2 T 1I T - IT

k T PC -!IT -k Ay L -x
x, zz (X + )pc x t I I A I z

xx yy xy

-(3A + ZgcL) T 0 (I - -v)(IxyOx, t + Ixx y t)

14



C)

The stress-resultant deformation equations are derived as before, except

that the Timoshenko shear constants Kx and Ky multiply the expressions for

Qx and Qy. (For a more complete discussion of theme constants, see Ref. 11).

The results are

N = EAw - Ea T

My = -E(IyyOx, z + Ixy y, z EL Ty

Mx = -E(Ixy Ox,z + I ,s) -E•Tx (29)

Qx = Kx A(u, z x

QY ~K A(v )y y z y

These expressions must now be substituted into the equations of motion (7);

the result is

KxjA(u, zz - • )PX = pAu tt

KyiA(v zz ,z P = pAtt

EAw - Ea T Pz = pAwisa .5 ,tt

(30)
E(I z. + IxyO 1 ) + KxA(u.. - Ox)

- p(Iyy~x, tt + Ixy y, tt +Ea Ty) Z = -Ry

E(Ixyox. zz + Ixxoy, z- +K yA(v z )

C "'(Ixygx, tt + Ixx y, tt) + Ec Tx, z = -Rx

15



I

Equations (28) and (30) constitute eight equations in the eight unknowns T,

Tx, TyI u, v, w, . 0. . The boundary conditions are the usual ones for

the Timoshenko beamiplus those discussed in the previous section for the

temperature terms.

16



SECTION IV

CALCULATIONS

The formulas derived herein will be used now to calculate the frequen-

cies of the free oscillations of a simply supported beam for which I = 0.xy

(This is not necessarily a symmetric cross section. ) Rotatory inertia and

shear deformation will be neglected. Two cases will be discussed: axial

vibrations with insulated ends, and bending vibrations with isothermal ends.

Bending (and temperature variations) will be assumed to occur in the xz plane

only.

With the above assumptions, the basic equations become -

[1(3 X+2Zj)2a O
k Tzz - PC X +- T t=

(3k + ZR)cL T 0 (I - 2v)Aw zt

(31)

S1(3k + Zi.) 2 o2 TO]T - kAk T - PC ..........3 T _ T
Ty, zz pc 1 + 11 1,t Iy

Syy

-(3k + Z4)a T 0 (1 - ZV)IyyU, zzt

Elyyu~ + pAu + EaT =0yy, zzzz ,tt y zz

EAw pAw Ea T 0

Thus it is seen that these equations uncouple into one pair involving w and T

and another pair involving u and T . The equations involving w and T are the

equations of axial vibration, and the equations involving u and Ty are the

bending equations; they will be treated separately.

17



0
Case 1: Axial vibrations, fixed and insulated ends

The boundary conditions are

w =T = 0 at z = 0, 1 (33),2

The basic equations are

T (3k + ZL)a T0 (I - Zv)Aw, tTzz " ( I * )T .t 
kCL

W 1 - W - T = 0

(34)
(3k + Zg•)L - TO0

2 EcI =-•
I p

It is easily seen that solutions satisfying the boundary condition (33) can be

taken of the form

w F(t) sinT

(35)
nrz

T =A G(t) co o -7 -

0
18



Then Eqs. (34) become

G + n y 3 ZiaTo-Z = 0

(36)

+ n n w 2 nn --- -- G=0 J

1

Then solutions of the form exp(twt) exist providing w satisfies the equation

n w€ Z\ n w) n W LWX•(~ZW)[Z +T 3X] +.T 2. 0 (37)

where x = k/pc is the thermal diffusivity. This is a cubic in w. If f = 0 or is

sufficiently small, there will be two roots close to u = nuc1 /1, which corre-

spond to the free vibrations without thermal effects, and a root close to

W = )f2 If/(I - e)], -which corresponds to a decaying "thermal wave."

It is of interest to compare the oscillations to those of a free vibration without

thermal effects. One sets

S= • • and n" 1 (38)

Thus (37) becomes

(M2 1 X)f1 + Ly(l - E) + 1.Y + 0 (39)

0
19



while E is usually small (4 G I0"u ) y is large, at least for the smaller modes.

(-y a 6 x 107). With this in mind, one finds that the roots close to " 1. 0 are

given by

=1 +jŽ + I- + +0(42) (40)
l/y +, +

-" + 1' +0( (41)
1/y + 1

The root near L = L/y is given by

+ +L. t/Y + O1 2) (42)t'3 y' y• /.Y + I+ l

Case U: Bending vibration- -pinned ends, ends kept at zero temperature

The basic equations are, from (31) and (32),

TA Ty + (3X + 21L)a T 0 (1 - Zv) (• k

Ty,5 zz " . (1 - E)Ty, t - kIyyU, zzt 1
(43)

Elyyu~ + pAu + ELT =0Jyy zzzz , tt y, zz

It suffices to consider solutions of the form

u = F(t) sin -• /

(44)

Ty = G(t) sin nr•

y -

20



Then

+yE n2 w(2G +(3X + ZIL)a TO(1 - Zv)I nZy Z 0

Mr-- F + - F:- G
44 2 Z

yy •F- y•• '-• G=0

yy II, 7W

Solutions of the form exp(iwt) exist if

2~ ~ "ý r4n" 2 it -LW

(~~~n n4r4~ ~ryy

4 4
iw n• r = o(45)

As before, there will be two solutions of the form

n T2 Ez l
=*p----g-- 

(46)

and one of the form

T (47)

21



for sufficiently small i. We are mainly interested in the root given by

Eq. (46). Accordingly, one sets

n 'w

2 21 1 48)

SA/I yy + n i /I V P -

Equation (45) becomes

except1 + - 4)Q - ey+ 0 (49)

This is an equation that is completely analogous to Eqs. (34) of the last

section, except that y is given by Eq. (48) instead of (38) and one must )
replace X + R/(3k + ZI) by g/(k + •). The roots are given by

i+ +I + oi 2)

_ +-_ +14 + L (€z)
+1 7 (50)

+f + 1 b43 +=y N I+ 21

22



be it temperature, deformation, or stress, and then to integrate this distri-

bution across the cross section to obtain resultants. These resultants are

then the quantities which are considered to be the dependent variables of the

resulting differential equations. Evidently, the success of the method depends

upon how closely the assumed distribution approximates the actual distribution.

In the case of thin beams, plates, and shells, a linear distribution suffices,

for all practical cases, to describe the stresses and deformations. For

temperature distributions, the situation is different. Depending on the prob-

lem, a linear distribution might or might not be indicated. In the case of a

plate or shell, this is not unreasonable; in the case of a beam, the success

of the linea'r approximation definitely would depend upon the individual problem

at hand. The insulated beam was chosen for two reasons: First, it is believed

that the linear distribution is probably a good approximation here since there

are no prescribed temperature gradients over the cross section. Second, it

is a natural boundary condition since such quantities as fC aT/an8T8ndi vanish for

an insulated lateral surface. To extend beam theory to include the other types

of boundary conditions, one must use some further approximations to obtain

the boundary integrals occurring in the averaged heat conduction equation.

The effects of shear deformation and rotatory inertia are definitely of

second order for most practical cases, becoming of importance mainly at

high frequencies, or where the shape of the cross section changes abruptly or

rapidly. The Biot coupling is also a small effect, becoming of importance

mainly when the dilatation changes rapidly. This would more or less imply

that for dynamic problems both effects would come into play under similar

circumstances, and it would be prudent to include all three effects in any

analysis where it is thought that any one effect would come into play. (The

case of a short beam in static loading where shear deformation is of impor-

tance is an obvious exception to the above statement.)

24
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